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M ULTID IS CIP L IN ARY

AERO DYNAMIC- STRU C TURAL

SHAPE OPTIMIZATION USING

DEFORMATION (MASSOUD)

Jamshid A. Samareh*

NASA Langley Research Center, Hampton, VA 23681

This paper presents a multidisciplinary shape parameterization approach. The ap-
proach consists of two basic concepts: (1) parameterizlng the shape perturbations rather
than the geometry itself and (2) performing the shape deformation by means of the soft
object animation algorithms used in computer graphics. Because the formulation pre-
sented in this paper is independent of grid topology, we can treat computational fluid
dynamics and finite element grids in a similar manner. The proposed approach is simple,
compact, and efficient. Also, the analytical sensitivity derivatives are easily computed
for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g.,
linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g.,
nonlinear computational fluid dynamics and detailed finite element modeling) analysis
tools. This paper contains the implementation details of parameterizing for planform,
twist, dihedral, thickness, camber, and free-form surface. Results are presented for a
multidisciplinary design optimization application consisting of nonlinear computational
fluid dynamics, detailed computational structural mechanics, and a simple performance
module.
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Nomenclature 0

wing area A

wing aspect ratio ,k

Bernstein polynomial _, r/, _"

wing span P

chord

camber

degree

scale factor for twist and shearing

B-spline basis function ca

normal vector I, J, K

coordinates of NURBS control point i, j, k

coordinates of deformed model id, jd

coordinates of baseline model L

shearing vector le

twist plane m

thickness p

parameter coordinate pl

MASSOUD design variable vector q

NURBS weights r

design variable vector sh

Cartesian coordinates of deformed model te

Cartesian coordinates of baseline model t

angle of attack, deg th

total deformation tw

deformation U
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twist angle, deg

leading edge sweep angle, deg

wing taper ratio

coordinates of deformation object

twist radius

Subscripts

camber

total numbers of control points

indices for NURBS control point

design variable indices

wing lower surface

leading edge

center

degree of B-spline basis function in i direction

planform

degree of B-spline basis function in ij direction

root

shear

trailing edge

tip

thickness

twist

wing upper surface

Superscripts

T transpose of the matrix
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Fig. 1 Internal components of a wing.

Introduction

ULTIDISCIPLINARY design optimization
(MDO) methodology seeks to exploit the

synergism of mutually interacting phenomena to
create improved designs. An MDO process commonly

involves sizing, topology, and shape design variables.

Multidisciplinary shape optimization (MSO) finds the

optimum shape for a given structural layout. It is

a challenging task to perform MSO for a complete

airplane configuration with high-fidelity analysis

tools. The analysis models, also referred to as grids

or meshes, are based on some or all of the airplane

components, such as skin, ribs, and spars. The aero-

dynamic analysis uses the detailed definition of the

skin, also referred to as the outer mold line (OML),

whereas the computational structural mechanics

(CSM) models use all components. Generally, the
structural model requires a relatively coarse grid, but

it must handle very complex internal and external

geometries. In contrast, the computational fluid

dynamics (CFD) grid is a very fine one, but it only

needs to model the external geometry. The MSO

of an airplane must treat not only the wing skin,

fuselage, flaps, nacelles, and pylons, but also the
internal structural elements such as spars and ribs

(see Fig. 1). The treatment of internal structural
elements is especially important for detailed finite

element (FE) analysis. For a high-fidelity MSO

process to be successful, the process must be based

on a compact and effective set of design variables
that yields a feasible and enhanced configuration.

For more details, readers are referred to an overview

paper by this author 1 on geometry modeling and grid

generation for design and optimization.

The model parameterization is the first step for an

MSO process. Over the past several decades, shape

optimization has been successfully applied for two-

dimensional and simple three-dimensional configura-
tions. The recent advances in computer hardware and

software have made MSO applications more feasible

for complex configurations. An important ingredient

of aerodynamic shape optimization is the availability

of a model parameterized with respect to the aero-

dynamic parameters, such as planform, twist, shear,
camber, and thickness. The parameterization tech-

niques can be divided into the following categories:

discrete, polynomial and spline, computer-aided de-

sign (CAD), analytical, and deformation. Readers are
referred to reports by Haftka, 2 Ding, 3 and Samareh 4

for surveys of shape optimization and parameteriza-
tion.

In a multidisciplinary application, the parameteriza-

tion must be compatible and adaptable to various anal-

ysis tools ranging from low-fidelity tools, such as linear
aerodynamics and equivalent laminated plate struc-

tures, to high-fidelity tools, such as nonlinear CFD and
detailed CSM codes. Creation of CFD and CSM grids

is time-consuming and costly for a full airplane model:
it takes several months to develop detailed CSM and

CFD grids based on a CAD model. To fit the MSO

process into the product development cycle times, the

MSO must rely on the parameterization of the analy-

sis grids. For a multidisciplinary problem, the process

must also use a geometry model and parameteriza-

tion consistently across all disciplines. For use with

gradient-based optimization, the geometry model must

provide accurate sensitivity derivatives of the analysis

model with respect to design variables.

This paper presents an approach for shape parame-

terization suitable for a multidisciplinary design opti-

mization application. The approach consists of two

basic concepts. The first concept is based on pa-

rameterizing the shape perturbation rather than the

geometry itself. The second concept is based on us-

ing the soft object animation 5 (SOA) algorithms for

shape parameterization. The combined algorithm ini-

tially introduced by this author 1 was successfully im-

plemented for aerodynamic shape optimization with
analytical sensitivity with structured grid 6'7 and un-

structured grid s CFD codes. This algorithm has also

been applied to multidisciplinary optimization of a

high-speed civil transport. 9,1°

Parameterizing the Shape
Perturbations

At first sight parameterization by splines may seem

to be a viable approach for shape parameterization.

The spline representation uses a set of control points

to define any shape. These control points could be
used as design variables for optimization. Typically

over a hundred control points are required to define
an airfoil section and over 20 airfoil sections to define

a conventional wing. This requirement results in over

two thousand control points (i.e., six thousand shape

design variables) for a simple wing. The number of
control points is even larger for a complete airplane

model created with a commercial CAD system. The

large number of control points is needed more for ac-

curacy than for complexity.
Even if we could afford to use a large number of

design variables, the automatic regeneration of analy-

sis models (e.g., CSM and CFD grids) is not possible
with the current technology. For example, it takes
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several months to create an accurate CSM model of

an airplane. Also, traditional shape parameterization

processes parameterize only the OML and are inef-

fective in parameterizing internal components such as

spars, ribs, stiffeners, and fuel tanks (see Fig. 1).

It is possible to use any shape (e.g., a sphere) as the

initial wing definition, allowing the optimizer to find

the optimum wing shape; however, it is not a com-

mon practice. Typically, the optimization starts with

an existing wing design, and the goal is to improve

or redesign the wing performance by using numerical

optimization. The geometry changes (perturbations)

between initial and optimized wing are very small, u' 12

but the difference in wing performance can be sub-
stantial. An effective way to reduce the number of

shape design variables is to parameterize the shape

perturbations instead of parameterizing the shape it-

self. Throughout the optimization cycles, the analysis
grid can be updated as

r .... _---]

ge  °nI
7:!!

_'_ Optimizer

r .... _

II Grid

I ¢_ generation

...
i. _ . [

[_ Analysis

J

r ....

I ge.eratio. I

i_ Analysis

R(_) = _ + A/_(_) (1)

where _ is the baseline grid, 1_ is the deformed (per-

turbed) grid, A/_ is the change (perturbation), and
is the multidisciplinary aerodynamic-structural shape

optimization using deformation (MASSOUD) design
variable vector. The change, A/_, is a combination of

changes in thickness, camber, twist, shear, and plan-
form:

AR = _R_h+ _R_ + 6Rtw + _h + _Rp_ (2)

It takes far fewer design variables to parameterize the

shape perturbation AR than _ itself.

Figures 2 and 3 contrast the typical and modified

MSO processes. In a typical MSO process (Fig. 2),

a geometry modeler perturbs the baseline geometry

model. Because automatic grid generation tools are

not available for all disciplines, it would be very diffi-
cult to automate this MSO process. In contrast, the

modified MSO process (Fig. 3) relies on parameteriz-

ing the baseline grids and avoids the grid generation

process, hence making it possible to automate the en-

tire MSO process.

Soft Object Animation

The field of SOA in computer graphics _ provides

algorithms for morphing images 13 and deforming mod-

els.14,15 These algorithms are powerful tools for modi-

fying shapes: they use a high-level shape deformation,

as opposed to manipulation of lower level geometric
entities. HalP 3 presented an algorithm and provided

computer codes for morphing images. The defor-

mation algorithms are suitable for deforming models

represented by either a set of polygons or a set of para-

metric curves and surfaces. The SOA algorithms treat

Fig. 2 A typical MSO process.

r ........

I _1 deformation

I_ 1

.......i
I

[ iI

Fig. 3 The modified MSO process.

the model as rubber that can be twisted, bent, tapered,

compressed, or expanded, while retaining its topology.

This is ideal for parameterizing airplane models that

have external skin as well as internal components (e.g.,

see Fig. 1). The SOA algorithms relate vertices of an

analysis model (grid) to a small number of design vari-
ables. Consequently, the SOA algorithms can serve as

the basis for an efficient shape parameterization tech-

nique.

BarP 4 presented a deformation approach in the con-

text of physically based modeling. This approach uses

physical simulation to obtain realistic shape and mo-

tions and is based on operations such as translation,

rotation, and scaling. With this algorithm, the defor-
mation is achieved by moving the vertices of a polygon

model or the control points of a parametric curve

and surface. Sederberg and Parry 15 presented another

approach for deformation based on the free-form de-

formation (FFD) algorithm that operates on the whole

space regardless of the representation of the deformed
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objects embedded in the space. The algorithm allows

a user to manipulate the control points of trivariate
Bezier volumes. The disadvantage of FFD is that the

design variables may have no physical significance for

the design engineers. This drawback makes it difficult

to select an effective and compact set of design vari-

ables. This report presents a set of modifications to

the original SOA algorithms to alleviate this and other
drawbacks.

For the modified SOA algorithms presented in the

next several sections, implementation will include the

following common set of steps:

1. Select an appropriate deformation technique and

object. This defines the forward mapping from

the deformation object coordinate system (4, r/, ()

to the baseline grid coordinate system (x, y, z).

2. Establish a backward mapping from the baseline

grid coordinate system (x,y,z) to the deforma-

tion object coordinate system (4, '7, (). The _, 7/, (

mapping parameters are fixed and are indepen-

dent of the shape perturbations. This is a prepro-

cessing step that is required only once.

3. Perturb the control parameters (design variables)
defining the deformation object.

Fig. 4 Thickness and camber definitions in wing
coordinate system.

/_I I ........... Z__--

4. Evaluate the grid perturbation (A/_) and shape

sensitivity derivatives (0/_/0_) using the (,7/,(

parameters.

The following sections provide recipes for using SOA

algorithms for parameterizing airplane models for

thickness, camber, twist, shear, and planform changes.

Thickness and Camber

We use a nonuniform rational B-spline (NURBS)

representation as the deformation object for thickness

and camber parameterization. The NURBS represen-
tation combines the desirable properties of National

Advisory Committee for Aeronautics (NACA) defini-
tion 16 and spline techniques, and it does not deterio-

rate or destroy the smoothness of the initial geometry.

The changes in thickness and camber are repre-

sented by

I J

aRth(_,71) = i=0 j=0, j (3)
E Ni,p({) E Nj,q(rl)W',J

i=0 j=0

I J

E E
7) = 5=0; + (4)

E N,,r(_) E Nj,q(rl)W,,J
i=0 j=O

Fig. 5 Thickness and camber definitions in x, y,
and z coordinate system.

where /Sth,,j and /5c_,._ are control points (forming a

control surface) for thickness and camber, Wij are the

weights, and Ni,p and Nj,q are the p and q degree B-
spline basis functions defined on the nonperiodic and

nonuniform knot vectors. Figures 4 and 5 show the

NURBS control points in (4, U) and (x, y, z) coordinate

systems, respectively. The control points and weights

could be used as design variables.

The NURBS representation has several important

properties for design and optimization. A NURBS

curve of order p, having no multiple interior knots,

is p - 2 differentiable. As a result, the NURBS repre-

sentation can handle a complex deformation and still
maintain smooth surface curvature. Readers are re-

ferred to the textbook by Farin 17 for details on the

properties of NURBS representation. The control

points are the coefficients of the basis functions, but

the smoothness is controlled by the basis functions,

not the control points. The NURBS representation is

local in nature, allowing the surface to be deformed lo-

cally, hence leaving the rest of the surface unchanged.

Equations 3 and 4 serve as the forward mapping be-

tween the thickness and camber design variables and

the grid perturbation (SRth, (f/_c_).

The next step is to establish the backward mapping

from the deformation object (i.e., NURBS surface)

coordinates ((,,1) to the baseline model coordinates
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Fig. 6 Curves defining the backward mapping.

(x, y, z). The wing coordinate system--percent chord
and span--is a good candidate. The percentage chord,

%c, is used for _, and the spanwise location, y, is used

for r/.

= %c, r/= y (5)

To calculate %c, we need to determine the wing chord

at each y station. The baseline CAD model provides

the leading edge (/_te(7/)), trailing edge (/_t_(r/)), wing

center /_m(r/), and normal vector, defining the airfoil

plane T(r]) as shown in Fig. 6. The curve defining the

wing center does not have to be at the center of the

wing, but it should be somewhere between the upper
and the lower wing surfaces. The /_t_ (rl), /_t_ (r/), and

/_m (7/) are used to separate points on the upper surface

from points on the lower surface.

Because we know r/for each grid point, we can de-

fine a plane that passes through the grid point with a
normal vector defined by T(r/). We must find the in-

tersection of this plane and the curves shown in Fig. 6,

= 0 (6)

T(I]) . [r - Rte( )]T : 0 (7)

- Rm(r/)]T= 0 (S)

Equations 6-8 must be solved for all grid points in

the model. For a high-order NURBS curve, Eqs. 6

and 8 are nonlinear and can be solved by the Newton-

Raphson method. The solution to Eqs. 6 and 8 for

each 7] is a set of three points located at the leading
edge, the trailing edge, and the center. The %c is cal-

culated based on the leading and trailing edge points.

Next, we need to separate the grid points defining the

wing model into upper and lower. We can connect the

three points obtained from Eqs. 6 and 8 to form a curve

that separates the upper surface from the lower sur-
face. This curve does not have to represent the camber

line accurately, and a wing with drooping leading edge

or with highly cambered airfoil sections may require

more than one /_,,(r]) to define the curve. With this

approach, it is possible to localize the deformation to a

specific design area by setting allowable C'_Cmin, %Cmax,

r/min_ and _max.

As the design variables (control points/si,j) change,
we can calculate the contribution from the thickness

and camber by Eqs. 3 and 4. The advantage of this

process is that the sensitivity of grid point location
with respect to design variables is only a function of

the B-spline basis functions,

OR OR Nid,p(_)gjd,q(r/)W,'d,jd

I J

i=O j=O

(v)

where id and jd are the indices of design variables,

Pid,jd. Consequently the sensitivity, as seen in Eq. 9,
is independent of the design variables (f)idjd) and the

coordinates (x, y, z). Thus, we need to calculate the
sensitivity with respect to thickness and camber only

at the beginning of the optimization.

Twist and Shear

The twist angle is defined as the difference between

the airfoil section incident angle at the root and each

airfoil section incident angle. Similarly, the shear (di-

hedral) is defined as the difference between the airfoil

leading edge z coordinate for the root and the z co-

ordinate at each airfoil section. If the twist angle at
the tip is less than the twist at the root, the wing is

said to have a washout, which could delay the stall at

the wing tip. Also, as the wing washout increases, the

wing load shifts from outboard to inboard. As a re-
sult, the spanwise distribution of the twist angle plays

an important role in the wing performance.

The SOA are used to modify the wing twist and

shear distribution. Alan Barr presented a series of

SOA algorithms for twisting, bending, and tapering

an object. 14 Watt and Watt referred to these algo-

rithms as nonlinear global deformation. 5 Sederberg
and Greenwood extended Barr's ideas to handle com-

plex shapes, is Modified versions of these algorithms

are presented in this paper.

To modify the twist and shear distributions, the

wing is embedded in a nonlinear deformation object
referred to as a twist cylinder, that is shown in Fig. 7.

The twist cylinder is also used for modifying shear dis-

tribution. The center of the cylinder is defined by a

NURBS curve, /_m(r/). The effect of deformation can

be confined to a section of a wing by limiting the pa-

rameter r/to vary between r/rain and _max. The r]min

can extend to the wing root, and the r/max can go be-

yond the wing tip. The cylinder can be twisted and

sheared only in a plane (twist plane) defined by a point
along/_m(r/) with a normal vector of T(r/). The Pi(r/)

and Po(r/) are the radii of inner and outer cylinders, re-
spectively (see Fig. 7). The deformation has no effect

for grid points located outside of the outer cylinder,
and the effect of deformation is scaled linearly from

the outer cylinder to the inner cylinder. This allows
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Fig. 7 Twist definition.

us to blend the deformed region with the undeformed

region in a continuous manner.

The angle 0(7/) defines the desired twist angle dis-
tribution, and S'(7/) defines the shearing vector. The

0(_/) and S(7/) variables are defined by NURBS repre-
sent ation:

I

0(7/)- ,=o (i0)
I

E
i=0

I

_(rl ) = i=o (Ii)
I

E
i=0

where #i and Si are the twist and shear design vari-

ables, respectively. Similar to thickness and camber

algorithms, we use

, = y, T(,) = (0, y, 0) _ (12)

The second step for twist and shear deformation is

to establish the forward mapping from the deforma-

tion object (twist cylinder) coordinate system (q) to
the model coordinate system (x, y, z). We use Eq. 8

to determine _/. Once 7/is determined, we can calcu-

late the local p(r/), pi(r/), po(r/), _P(r/), 0(rl), and S(r/).
The point _ is rotated 0(q) degrees about/_,,(r/) and
sheared oo.

5/_tw(O) = e(7/)p(7/)[sin 0(q),0, cos0(7/)] T (13)

5/_h(r/) = e(_)S(r/) (14)

where e(_) is a scale factor which diminishes the effect

of deformation as we approach the outer cylinder.

if p(r/) > po(r/)

if pi _< p(r/) < po(r/)

if p(r_) < pi

(15)

The sensitivity of a grid point with respect to the

twist and shear design variables is

Fig. 8 Twist definition for a transport.

Fig. 9 Result of 45 ° twist on a transport.

O0_

O&

O0( ) %osO"" sinO(y)] 16)

The term O0(_l)/OOi is independent of the twist de-
sign variables Oi (see Eq. 10). However, sin 0(q) and

cos 0(_/) depend on the twist design variables and must

be updated every cycle of the optimization. In con-
trast, the term OS(r/)/OSi is independent of shear

design variables Si (see Eq. 11).

Figure 8 shows the inner twist cylinder for a com-

mercial transport. Figure 9 shows the result of twist-

ing the wing 45 ° at the tip. This is a large and
unrealistic amount of twist, but it shows the effective-
ness of the SOA.

Planform Parameterization

The wing planform is typically modeled with a set of

two-dimensional trapezoids in the x-y plane. Figure 10

shows the planform of a generic high-speed civil trans-

port that uses two trapezoids. As shown in Fig. l l,

each trapezoid is defined by the root chord (C_), tip

chord (Ct), span (b), and sweep angle (A). From these,

other planform parameters such as area (A), aspect ra-

tio (A_), and taper ratio (A), are defined:

b b_ Ct
A : _(C_ + C,), A_ = _, A = -- (18)C_
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Fig. 10 Planform of a generic high-speed civil
transport.

',_
f - ,

22"-2 - _"

u

$
i Span, b ' :

Fig. 11 Planform definition.

Fig. 13 NURBS volume for free-form deformation.

/ //__...../

/.J. .............

_(_, r],_) = t50 + fi¢_ + hot/+ h¢¢" (19)

where/50 is the origin of the parallelepiped, and fi_, rio,

and fie are the unit vectors along the parallelepiped
primary edges in _, r/, and _" directions, respectively.

Equation (19) defines a mapping between the deforma-

tion object (parallelepiped) and the grid point. The

grid points, _, are mapped to the coordinates of the

parallelepiped, _, 9, and _, as

Fig. 12 Parallelepiped volume for free-form defor-
mation.

The FFD algorithm described by Sederberg and
Parry 15 is ideal for deforming the polygonal models.

Like other SOA algorithms, this algorithm maintains
the polygon connectivity, and the deformation is ap-

plied only to the vertices of the model. The FFD

process is similar to embedding the grid inside a block

of clear, flexible plastic (deformation object) so that,

as the plastic is deformed, the grid is deformed as well.

Deformation of complex shapes may require several

deformation objects. The shape of these deformation
objects is not arbitrary. In fact, they must be three-

dimensional parametric volumes, which could range

from a parallelepiped as shown in Fig. 12 to a gen-

eral NURBS volume as shown in Fig. 13. The block is
deformed by perturbing the vertices that control the

shape of the deformation block (e.g., corners of the

parallelepiped). For parametric volume blocks, param-

eters controlling the deformation are related through

the mapping coordinates (_, 9,_). These coordinates

are used in both forward and backward mapping.

Figure 12 shows a general parallelepiped defined by

a set of control points forming three primary edges

or directions along _, 9, and _. The relation for a
parallelepiped is defined as

7OF 11

=
× • (%)

r/ =
×

¢ =
×

(2o)

A grid point is inside the parallelepiped if 0 _< _, ,7, _ <
1.

The FFD technique based on the parallelepiped is

very efficient and easy to implement. It is suitable for

local and global deformation. The only drawback is
that the use of the parallelepiped limits the topology

of deformation. To alleviate this drawback, Seder-

berg and Parry proposed to use nonparallelepiped ob-

jects, is They also noted that the inverse mapping

would be nonlinear and require significant computa-
tions.

Another popular method to define FFD is to use

trivariate parametric volumes. Sederberg and Parry

used a Bezier volume. 15 Coquillart at INRIA extended

Bezier parallelepiped to nonparallelepiped cubic Bezier

volume. 19 This idea has been further generalized

to NURBS volume by Lamousin and Waggenspack. 2°
The NURBS blocks are defined as

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER PAPER



Tetrahcdton PentahedrcJn Hcxaicdmn

Fig. 14 FE analysis solid elements.

_(_, 7, C) =

I d K

E Ni,pl (_) E Ni,p2 (7]) E Nk,p3 (_) Wi,j,k Pi,j,k
i=O j=0 k=0

I J K

i=0 j=O k=O

(21)

where N is the B-spline basis function, and the pl-

p3 are the degrees of N. The Pi,j,k are the NURBS

control points that are related to the design variables.
Lamousin and Waggenspack 2° used multiple blocks to

model complex shapes. This technique has been used

for design and optimization by Yeh and Vance 21 and

also by Perry and Balling. 2_

The common solid elements used in FE analysis

(Fig. 14) can be used as deformation objects. The
mapping from the solid element coordinates is de-

fined 23 by

= P,N;(¢,,, ¢) (22)
i

where AT/ are the FE basis functions, and Pi are the

nodal coordinates of deformation objects, which are

related to the design variables. The equations for the

inverse mapping are nonlinear for all solid elements
with the exception of tetrahedron solid elements. The

solid elements provide a flexible environment to deform

any shape. Complex shapes may require the use of
several solid elements to cover the entire domain.

To model the planform shape, we have used hexa-

hedron solid elements with four opposing edges par-

allel to the z-coordinate. Then, the planform design
variables are linked to the corners of the hexahedral

elements. Figure 15 shows the initial and deformed

model for a transport configuration. The solid lines

represent the controlling hexahedron solid elements.
The baseline model is on the left-hand side, and the

deformed shape is on the right-hand side.

As with the camber and thickness algorithms, the

sensitivity of grid point coordinates is independent of

Fig. 15 Planform deformation of a transport.

the design variables (f'id,jd) and coordinates (x, y, z).
Thus, we need to calculate it only once, at the begin-

ning of the optimization.

Implementation

Figure 16 shows the implementation diagram for the

combined algorithm. The implementation starts with
a CAD model that defines the geometry. The first two

steps can be implemented in parallel. The first step
is to determine the number and the locations of the

design variables with the aid of the CAD model. In the

second step, the grids are manually generated for all

involved disciplines. In the third step, the mappings

described in the previous sections are calculated for

each grid point. In the fourth step, the new grid is

deformed in response to the new design variables, and

the sensitivity derivatives are computed as well. The
third and fourth steps are completely automated. The

first three steps are considered preprocessing steps and

need to be done only once.

Parameterizing Computational
Structural Mechanics Models

Parameterizing CFD and CSM models appears to

be similar in nature, but the CSM model parameter-

ization has two additional requirements. First, the

CSM model parameterization must include not only
the OML but also the internal structural elements

such as spars and ribs. Second, the deformed CSM
model must be a valid design. For example, the spars

must stay straight during the optimization. The algo-

rithms presented in this paper can easily handle the
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Fig. 16 Implementation diagram.

first requirement. However, if the planform design
variables are not selected with care, the second re-

quirement could easily be violated. To avoid creating

invalid CSM models, planform must be parameterized

with few hexahedron solid elements, and they must

be aligned with major structural components such as

spars and ribs.

Sensitivity Analysis

Sensitivity derivatives are defined as the derivatives

of the coordinate locations with respect to the design

variables. The previous sections present a formulation

for shape parameterization based on a specific set of

design variables (vi, i = 1,/max). It is possible to in-

troduce a new set of design variables (wj, j = 1, jmax).
The sensitivity derivatives with respect to wj is com-
puted based on the chain rule differentiation as

Offt Oft Ovi
_ (23)

Owj Ovi Ow._

The previous sections provide techniques to compute

the first term on the right-hand side. The second term

is defined in a matrix form where the matrix has/max

rows and jmax columns.

0_2_1. 0vl 0vl 7

o,_1 o,_ "'" °'°dg_'x I
Ow_ Ow_ " " " Ow.im.x

.... (24)

OWl Ott)2 ' " ' OtO jmax J

Design-Variable Sequencing

In a typical optimization problem, the number of

design variables is determined a priori. However, it

2 DVS

 ovs
?/ "--.2

Fig. 17 A sequence of design-variable sets.

is possible to use an adaptive algorithm to determine

the number of design variables. The design variables

are control points of a NURBS curve or surface. Opti-

mization of a wing section could start with only three

design variables (see Fig. 17). Then, the number of

design variables can be increased to five by enriching
the NURBS curve, which is accomplished by inserting
additional knots.

This method is similar to mesh sequencing and

multigrid methods used in CFD to accelerate the con-

vergence. Multigrid method exhibits a convergence

rate that is independent of the number of unknowns

in the discretized system. The final paper will contain

results of the proposed sequencing algorithm.

Results and Conclusions

The algorithms presented in this paper have been

applied for parameterizing a simple wing, a blended
wing body, and several high-speed civil transport con-

figurations. Figure 18 shows the baseline and deformed

grids for a high-speed civil transport. The solid lines

represent the hexahedron solid elements controlling

the planform variation. The parameterization results

from this research have been successfully implemented

for aerodynamic shape optimization with analytical
sensitivity with structured 6 and unstructured CFD

grids, s This approach has also been applied to mul-

tidisciplinary optimization of a high-speed civil trans-

port.9, 10

The parameterization algorithm presented in this

paper is easy to implement for an MDO application

with complex configuration. The resulting parameter-

ization is consistent across all disciplines. Because the

formulation is based on the SOA algorithms, the an-
alytical sensitivity is also available. The algorithms

are based on parameterizing the shape perturbations,

thus enabling the parameterization of complex existing
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HSCT

Parameterization of the CSM Model of

analysis models (grids). Another benefit of param-
eterizing the shape perturbation is that the process
requires few design variables. Use of NURBS represen-
tation provides strong local control, and the smooth-
ness can easily be controlled.

The final paper will contain the proposed sequenc-
ing algorithm, the free-form surface object, and corre-
sponding results.
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